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nobrega@science.uva.nl, {cerioli,petrucio}@cos.ufrj.br

Abstract. In this work, we study some aspects of characterizations by forbid-
dance. In the general case, we investigate the existence of these characteriza-
tions in quasiordered sets, when certain special properties are required. In the
case of graphs, we design an algorithm for decomposition by maximal clique
separators, which is applicable in the search for forbidden subgraphs for some
classes of path graphs. Finally, we apply known techniques, as well as a tool
which is introduced in this work, to find an infinite family of forbidden subgraphs
for the class of path graphs UE.

Resumo. Neste trabalho, estudamos alguns aspectos das caracterizações por
proibição. No caso geral, investigamos a existência destas caracterizações
em conjuntos quasiordenados, quando certas propriedades especiais são exigi-
das. No caso de grafos, nós elaboramos um algoritmo para decomposição por
cliques maximais separadoras, que se aplica na busca de subgrafos proibidos
para algumas classes de grafos de caminho. Finalmente, aplicamos técnicas já
conhecidas, em conjunto com uma nova ferramenta introduzida neste trabalho,
para encontrar uma famı́lia infinita de subgrafos proibidos para a classe de
grafos de caminho UE.

1. Introduction
Characterizations by forbidden subgraphs or forbidden minors are often found in Graph
Theory. This is in part because these characterizations condense a lot of the structural
properties of the characterized class into a concise and elegant statement. In many cases,
these properties allow for the solution of problems which are hard in general, and some-
times they also allow for the creation of efficient algorithms, although sometimes only in
an indirect manner. A famous example of this is the Graph Minor Theorem of N. Robert-
son and P. Seymour, which states that every class of graphs which is closed under minors



can be characterized by a finite set of forbidden minors, cf. [Lovász 2006]. In particular,
this implies that every such class has polynomial-time recognition. This theorem indicates
that the minor relation is fundamentally different from, say, the relations of subgraph or
induced subgraph, since these relations do not satisfy an analogous theorem.

The author’s Master’s dissertation contemplates three different areas of study, and
is accordingly composed of three distinct parts, presented as different sections in this sum-
mary. For each theorem appearing in this summary, we indicate the number under which
it appears in the dissertation. In the first part, motivated by the discussion of the preceding
paragraph, a general abstract study of the existence of characterizations by forbiddance
under certain requirements is initiated, and we obtain results both of characterization and
of undecidability. In the second part, we elaborate an algorithm for decomposing graphs
by maximal clique separators, which is a basic tool in the study of classes of graphs de-
fined by forbiddance. This algorithm corrects one elaborated by R. Tarjan for the same
end. Finally, in the third part of the dissertation, we present a study of characterizations
by classes of path graphs by forbiddance, including a survey of known results, as well as
the construction of an infinite family of forbidden graphs for UE graphs.

More precisely, as presented in further detail in Section 2, we investigate the exis-
tence of characterizations by forbiddance in quasiordered sets, when certain natural prop-
erties of conciseness are demanded. In particular, we give a necessary and sufficient
condition for a qoset to have characterizations by forbidding sets which are minimal (in a
precise sense, satisfied by finite graphs with the induced subgraph relation), and we show
that the problem of determining whether a closed set of finite graphs can be characterized
by forbidding a finite set of induced subgraphs, or of subgraphs, is undecidable. This
implies that the problem of determining whether a closed set in a general qoset has a fi-
nite forbidding set is also undecidable. The main results of this section were presented at
the 2011 European Conference on Combinatorics, Graph Theory and Applications (Eu-
roComb’11), in Budapest, Hungary, August 29th – September 2nd, 2011.

The proofs of the characterizations by forbiddance in Graph Theory are, in gen-
eral, based on structural theorems satisfied by the class under consideration. The classes
of path graphs, generic name given to the several classes of intersection graphs of paths
in trees, deserve special mention in this discussion, since they have an extensive and
uniform theoretical framework, composed of structural theorems which are naturally ap-
plicable to characterizations by forbiddance, cf. [Petito 2002]. However, even with such a
vast array of structural theorems, the problem of finding such characterizations for these
classes has still proven to be very challenging. This is corroborated by the relatively few
path graph classes for which the complete list of forbidden subgraphs is known at this
time [Panda 1999, Cerioli and Petito 2005, Tondato et al. 2005, Lévêque et al. 2009].

Some of the most important structural theorems satisfied by path graph classes
are based on the decomposition by maximal clique separators, a particular instance of a
general method for solving graph problems known as graph decomposition. As far as we
know, the only known algorithm to decompose a graph by its maximal clique separators
is the one sketched by R. Tarjan in [Tarjan 1985]. However, as we show in Section 3, this
algorithm is not correct. In that section, we also propose a correct modification to that
algorithm, retaining the same O(nm) time complexity. The main results of that section
have appeared as an extended abstract in Cerioli, M. R., Nobrega, H., and Viana. P. (2010),



Decomposition by maxclique separators, Matemática Contemporânea, 39:69 – 76, after
having been presented at the 4th Latin American Workshop on Cliques in Graphs (Law-
Cliques’10), in Petrópolis, Brazil, November 16th – 19th, 2010. They have also been
submitted as a full article to Discrete Mathematics.

Finally, in Section 4, we introduce a graph construction which allows us to de-
termine a significant part of the forbidden subgraphs for the UE class of path graphs.
It is also shown that the family of forbidden subgraphs so obtained contains all of the
forbidden subgraphs for UE graphs which satisfy a certain set of conditions. The main
results of that section were presented at the 10th Cologne-Twente Workshop on graphs and
combinatorial optimization (CTW2011), in Frascati, Italy, June 14th – 16th, 2011.

2. Characterizations by nice forbidding sets
Let Q = (U,R) be a qoset, i.e., let R be a reflexive and transitive binary relation over the
set U , which is assumed to be nonempty. GivenX ⊆ U , ForbRX denotes the set {y ∈ U :
@x ∈ X s.t. xRy}, and X is a forbidding set of ForbRX . A set Y ⊆ U is characterizable
by forbiddance when there exists X ⊆ U such that Y = ForbRX . In the most general
case, it is a well-known result that X is characterizable by forbiddance iff X is closed
under R. However, the forbidding set used in the proof of this fact, namely X , can hardly
be called nice from any point of view. In practice, when doing such characterizations one
is always interested in forbidding sets which have some nice property of conciseness, and
which might say more of the structure of the class in question.

For example, a set X ⊆ U is a minimal forbidding set when, for every x ∈ X and
y ∈ U , if yRx and y 6= x, then y ∈ ForbRX . For finite graphs, this is equivalent to the
statement that, for each G ∈ X and each vertex v of G, we have Grv ∈ ForbRX . A suf-
ficient condition for guaranteeing minimal forbidding sets is given by well-foundedness.
We say Q is well-founded when every nonempty subset X of U has a minimal element,
i.e., an element x ∈ X such that yRx does not hold for any y ∈ Xr{x}.
Theorem (Theorem 12). IfQ is well-founded, then every set which is closed under R has
a minimal forbidding set.

Thus, every class of finite graphs which is closed under induced subgraphs has a
minimal forbidding set. However, it is easy to see that well-foundedness is not a necessary
condition for the existence of minimal forbidding sets. In order to state the desired weaker
condition, we say Q is well-founded on closed sets when every nonempty and closed
subset of U has a minimal element.

Theorem (Theorem 16). X has a minimal forbidding set iff X is closed and the qoset
(X,R ∩X2

) is well-founded on closed sets.

Another notion of conciseness can be given by forbidding sets which are finite.
As discussed previously, it is now a classic result that every class of finite graphs which
is closed under minors has a characterization by a finite forbidding set. As can be easily
seen, an analogous result does not hold for finite graphs with induced subgraphs. There-
fore, it would be desirable to characterize those closed sets of this qoset that do have such
characterizations. In this context, our main results are the following (note that, in order
for these results to make sense, formally we assume that all of the objects in question are
computable, i.e., they are presentable to a computer as input).



Theorem (Theorem 25). Let P = (U,R) be a countable poset, such that for each x ∈ U ,
the set {y ∈ U : yRx} is finite. The problem of determining whether a closed set of P
has a finite forbidding set is undecidable.

Corollary (Theorems 23 and 30). The problems of determining whether a closed set of a
qoset has a finite forbidding set, and of determining whether a set of finite graphs closed
under induced subgraphs has a finite forbidding set, are undecidable.

3. Decomposition by maximal clique separators

Procedures for decomposing graphs into smaller pieces often play a central role in graph
theory. A particular type of graph decomposition which has found many interesting appli-
cations is that of decomposition by clique separators, and in this discussion, the classical
algorithm in the literature is the one found in [Tarjan 1985]. Tarjan added a note at the
end of his paper proposing a simple modification of his algorithm to find a decomposition
by maximal clique (maxclique, for short) separators, and claimed this modified algorithm
retained the same O(nm) time complexity. This algorithm has been used, for example, to
recognize some classes of path graphs [Monma and Wei 1986, Spinrad 2003].

An elimination ordering π of G is a bijection between V (G) and {1, . . . , n}.
We say u, v ∈ V (G) are fillable if they are nonadjacent and there exists a path P =
u, x1, . . . , xk, v inG such that π(xi) < min{π(u), π(v)}, for all i ∈ {1, . . . , k}. Together,
such pairs form the set Fπ of fill-in edges created by π. Furthermore, we say π is a min-
imal elimination ordering (m.e.o.) when there is no other elimination ordering π′ of G
such that Fπ′ ⊂ Fπ. For each vertex v of G, we define Cπ(v) = {u ∈ V : π(u) >
π(v) and uv ∈ E ∪ Fπ}.

Using these concepts, R. Tarjan developed an O(nm) algorithm to decompose a
given graph by clique separators. However, in the author’s dissertation, a minimal coun-
terxample is presented, showing that the proposed algorithm is not correct. Our main
result of this section is Algorithm DMS, below, which is a correct modification of Tar-
jan’s proposed algorithm, and preserves its O(nm) time complexity.

Theorem (Theorems 61 and 63). If G has a maxclique separator, then for any minimal
ordering π of G, some decomposition step of Algorithm DMS separates G. Furthermore,
if at some step Algorithm DMS separates G into G1 and G2, then G1 is an atom.

4. A partial characterization by forbidden subgraphs of edge path graphs

In this section, where we use the uniform notation introduced in [Monma and Wei 1986],
we show how a large family of forbidden subgraphs for UE graphs can be obtained using
a construction from the well-known class of 4-critical graphs.

The main tool which has been used in characterizing path graph classes by forbid-
den subgraphs is the Separator Theorem, due to Monma and Wei, which is based on the
following concepts. If C is a maxclique whose removal disconnects G, then C separates
G, and if Vi is the vertex set of a connected component of GrC, then Gi = G[Vi ∪ C] is
a separated graph of G by C. If v ∈ C has a neighbor vi ∈ Vi, then Gi is a neighboring
subgraph of v. Two separated graphs Gi and Gj of G by C are antipodal when there exist
maxcliques Ci, C ′

i, C
′′
i of Gi and Cj, C ′

j, C
′′
j of Gj , such that:



Input: A graph G.
Output: A decomposition of G by maxclique separators, if one exists.
Compute an m.e.o. π of G ;
foreach v ∈ V do compute Cπ(v) ;
foreach v ∈ V in increasing order w.r.t. π do

if Cπ(v) is a separating clique of G then
A(v)← the vertex set of the conn. comp. of GrCπ(v) containing v ;
B(v)← V r(A(v) ∪ Cπ(v)) ;
if ∃A′ ⊂ A(v) s.t. Cπ(v) ∪A′ is a maxclique of G and A′ 6= ∅ then

G1 ← G[A(v) ∪ (Cπ(v) ∪A′)];
G2 ← G[B(v) ∪ (Cπ(v) ∪A′)];
G← G2;

 “type (i) decomposition step”

else if ∃B′ ⊂ B(v) s.t. Cπ(v) ∪B′ is a maxclique of G then
G1 ← G[A(v) ∪ (Cπ(v) ∪B′)];
G2 ← G[B(v) ∪ (Cπ(v) ∪B′)];
G← G2;

 “type (ii) decomposition step”

end
end

end
Algorithm 1: Decomposition by Maxclique Separators, DMS

1. Ci ∩ C ′
j 6= ∅;

2. Ci ∩ C 6⊇ C ′′
j ∩ C;

3. Cj ∩ C ′
i 6= ∅; and

4. Cj ∩ C 6⊇ C ′′
i ∩ C.

The antipodal graph of G by C, denoted by A (G,C), is the graph which has the sepa-
rated graphs of G by C as vertices, and such that two vertices Gi and Gj are adjacent iff
Gi and Gj are antipodal.

Although the class UE itself is not characterized by Monma and Wei’s Separator
Theorem, the subclass of UE graphs which are also chordal, denoted by UEC, is:

Theorem (Separator Theorem for UEC, Theorem 75). LetG be separated by a maxclique
C. Then G is a UEC graph iff each separated graph Gi is a UEC graph, and A (G,C)
has a 3-coloring in which the set of neighboring subgraphs of each v ∈ C is 2-colored.

The construction and the main result

Given G, construct the graph constr(G) by first subdividing each edge by a new vertex,
and then transforming the set of new vertices used in these subdivisions into a clique
CG. It is not hard to see that if δ(G) ≥ 2, then CG is the only separating maxclique of
constr(G), and A (constr(G), CG) = G.

For the main result, we need the following concepts. A graph G is k-critical when
χ(G) = k and, for each proper subgraph H of G, we have χ(H) < k. We denote by C4

the set of all graphs which are constr(G) for some 4-critical graph G.

Theorem (Theorem 100). G ∈ C4 if, and only if, G is a forbidden subgraph for UEC
graphs, but not for UV graphs, such that G is separated by a maxclique C, with A (G,C)
not 3-colorable, and such that each v ∈ C has at most two neighboring subgraphs.



In particular, C4 is a family of forbidden subgraphs for UEC, and since constr(G)
is chordal for every G, we also have that C4 is a family of forbidden subgraphs for UE
graphs. Furthermore, it follows that recognizing 4-critical graphs is as hard as recognizing
this subfamily of forbidden subgraphs for UE.

5. Future work
As future research, we can highlight:

• Investigation of the relationship between the complexity of recognizing a set
which is definable by forbiddance, and properties satisfied by its forbidding set.
• Application of the decomposition by maxclique separators to characterizations of

other classes of graphs by forbiddance, and also apply them to the solution of
other graph problems.
• Development of tools that enable one to find the complete characterizations of

the various classes of path graphs by forbiddance. In particular, the search for
a good characterization of the antipodality of perfect graphs, in the same mold
as the existing ones for split and chordal graphs, and the search for properties
of the antipodal graphs of forbidden subgraphs for UE that allow one to further
determine the list of forbidden subgraphs for that class, especially for the cases
not covered by Theorem 100.
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